Taking care of your ride

duction of mechanical force by the interactions of an electric current and a magnetic field, Amp?re's force law, was discovered later by André-Marie Amp?re in 1820. The conversion of electrical energy into mechanical energy by ele

Taking care of your ride mot emissions

History of electric motor

Perhaps the first electric motors were simple electrostatic devices created by the Scottish monk Andrew Gordon in the 1740s.2 The theoretical principle behind production of mechanical force by the interactions of an electric current and a magnetic field, Amp?re's force law, was discovered later by André-Marie Amp?re in 1820. The conversion of electrical energy into mechanical energy by electromagnetic means was demonstrated by the British scientist Michael Faraday in 1821. A free-hanging wire was dipped into a pool of mercury, on which a permanent magnet (PM) was placed. When a current was passed through the wire, the wire rotated around the magnet, showing that the current gave rise to a close circular magnetic field around the wire.3 This motor is often demonstrated in physics experiments, brine substituting for toxic mercury. Though Barlow's wheel was an early refinement to this Faraday demonstration, these and similar homopolar motors were to remain unsuited to practical application until late in the century.


Jedlik's "electromagnetic self-rotor", 1827 (Museum of Applied Arts, Budapest). The historic motor still works perfectly today.4
In 1827, Hungarian physicist Ányos Jedlik started experimenting with electromagnetic coils. After Jedlik solved the technical problems of the continuous rotation with the invention of the commutator, he called his early devices "electromagnetic self-rotors". Although they were used only for instructional purposes, in 1828 Jedlik demonstrated the first device to contain the three main components of practical DC motors: the stator, rotor and commutator. The device employed no permanent magnets, as the magnetic fields of both the stationary and revolving components were produced solely by the currents flowing through their windings

Źródło: https://en.wikipedia.org/wiki/Electric_motor


User interface - from Wikipedia

Cars are equipped with controls used for driving, passenger comfort and safety, normally operated by a combination of the use of feet and hands, and occasionally by voice on 2000s-era cars. These controls include a steering wheel, pedals for operating the brakes and controlling the car's speed (and, in a manual transmission car, a clutch pedal), a shift lever or stick for changing gears, and a number of buttons and dials for turning on lights, ventilation and other functions. Modern cars' controls are now standardised, such as the location for the accelerator and brake, but this was not always the case. Controls are evolving in response to new technologies, for example the electric car and the integration of mobile communications.


Źródło: https://en.wikipedia.org/wiki/Car#User_interface


Content for beginners car fans

Cars are a rather complicated layouts and worth to each control you have knowledge of the most relevant information in this regard. First of all, take a look at the information on the basic elements of the construction of the car. These include not only the engine and steering wheel, but also many related parts, for example, with the propulsion system. More than one part of the car is completely black magic to people not connected in any way with the automotive industry. Some knowledge in this area is necessary, for example when driving course, but a lot of people quickly forget obtained message. It is worth it to remember, especially because it's easier, we can use the machine as we know it.